IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Non-Abelian phase spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 2801
(http://iopscience.iop.org/0305-4470/27/8/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:29

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 27 (1994) 2801-2810. Printed in the UK

Non-Abelian phase spaces
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Abstraet. For a vector space V, its phase space T*V is the vector space V @ V* together
with the canonical symplectic form on it. Since the vector space is the same as an Abelian Lie
algebra, the natural question is: given a Lie algebra G, does there exist a phase space 7*G? In
general, the answer is negative. Below, for a large class of Lie algebras &, the phase space T*¢
is constructed, Three examples are treated in detail: @ = gI(V); G = D(R"), the Lie algebra
of vector fields on R”?; and current algebras,

1. Introduction

Let V be a vector space over a field k. The phase space of V, T*V, is the vector space
V & V* endowed with the symplectic form

wE®u", vev") = u",v) - V7, u) wveV wvteV. (1

If we consider V as an Abelian Lie algebra, the natural framework for the notion of the
phase is the following: given a Lie algebra G (over k), make the vector space G + G* into
a Lie algebra, T*F, in such a way that the symplectic form « (equation (1)) is a 2-cocycle
on T*G, i.e.

w(lu +ul, ug+ujl,us+uj)+cP=0 weG ujeG (@)

where ‘CP’ stands for ‘cyclic permutation’. As posed for an arbitrary Lie algebra, this
problem has, in general, no solution. Below, I will describe a large class of Lie algebras for
which one can find a phase space. This class includes: gI(V}; D(R"), the Lie algebra of
vector fields on R"; and current algebras. The basic idea is this: if the Lie algebra G comes
out of an associative algebra A then everything is fine. But the associativity condition on
A can be significantly weakened, producing the so-called quasi-associative algebras.

2. Quasi-associative algebras

Let A be an algebra over k, not necessarily associative, A is called quasi-associative [1] if
a(be) — (ab)e = blac) — (ba)c Ya,b,ce A. (3)

In particular, every associative algebra is quasi-associative.
Denote by Lie{A) the vector space of A with the new multiplication

la,bl=ab —ba. (4)
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Proposition I. If A is quasi-associative then Lie(A) is a Lie algebra.
Proof . We have to check the Jacobi identity

[la,b),c] +cp=0. 5)
We have
[la.5), c] + cp = [ab — ba, c} +cP
= [(ab — ba)e — clab — ba)] + CP
= [(ab)c + cP] - [(ba)c + CP] — [c(ab) + cP] + [c(ba) + cP]
= [(ab)c + cP] — [(ba)c + cp] — [a(be) + cP] + [b(ac) + cp]
= {[(ab}c — a(bc)] — [(ba)e — blac)]) +CcP=0 by (3).

Remark J. When A is associative rather than quasi-associative, the proposition | describes
the standard fact and leads to the notion of the universal enveloping algebra of a Lie algebra.
Formula (3) (or formula (3") below) shows how to generalize this notion.

Remark 2. Proposition | remains true if one defines quasi-associativity using the opposite
multiplication in A, so that the defining relation (3) becomes

(abYe — albe) = (ac)b — alch) Ya,b,ce A, (3"
Remark 3. The defining relation (3) can be equivalently stated as

a(be) — (ab)c  is symmetric in a, b ©)
or as

albe) + (ba)e is symmetric in a, b. )]

Example I. Let A = C®(R!), the space of smooth functions on R!, with the multiplication
gob =ab (8)
where &’ = db/dx. Then for the Lie algebra Lie(A) we have the commutator
[¢,6] =aocb—boa=ab —d'b
so that Lie(4) = D(R"). On the other hand,
ac(hoc)—(aob)oc=a(bc — (b =abc”
is symmetric in &, b, so that, by {(6), A is quasi-associative.
Example 2. A= K", K =C%®(R"), with the multiplication in 4
(Xo¥) = XY, X = (X" Y=()eA ©)

where ( ), = 3(-)/3x", and (x',...,x") are the coordinates on R"; summation over
repeated indices is in force. Since, for Lie(A), we have

[X,YP=(Xo¥Y —(YoX) = XY —ysXx!
we see that Lie(A) = D(R"). To check the quasi-associativity of A, we have
[Xo(YoZ)—~(Xo¥)oZ] = X¥(¥Y 0 Z), - (X0 ¥Y)'Zi,
=XHYZ ) e - XOYLZL = XYV Z

and this is symmetric in X, ¥; by (6), A is quasi-associative.
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3, T* A, the phase space of A

Let A* = Hom(A, k) be the dual space to A. We shall make the vector space T*A = A+A*
into an algebra by extending the multiplication from A into T*A via the rules

A*A* = {0} A*A C AY AAY C A~ (10a)
a*'b=0 (106)
{ab*, c) = —(b", ac} a*, b* e A" a,b,e A. (10¢)

Proposition 2. If A is a quasi-associative algebra then the phase space of A, T*A, is again
a quasi-associative algebra.

Proof. Because of (10z), in checking the defining relation (3) for T*A, we have to verify
this relation only for the three cases when one of the arguments in this relation belongs to
A* and two others belong to A. We have,

() a*(bc) — (@*b)c = b(a*c) — {ba*)c = 0 by (10b);
(ii) similarly for the case when b € A* in (3):
(ii){a(bc™) — (ab)c*,d}  (by (10c))

= — (bc*,ad) + (c", (ab)d) (by (10c))
= {c*, blad)) + {c*, (ab)d) = (c*, blad) + (ab)d) (1
and, by (7). this is symmetric in a, 5. Thus, by (6), T*A is quasi-associative.

Remark 4. T*A is not associative even if A is (otherwise the expression (11) would have
been identically zero).

Remark 5. For the opposite multiplication (3'), formulae (105) and (10¢) take the form
ab® =0 {a*h, c) = —{a”*, cb). (12)
For the commutator in the Lie algebra T*Lie(A): = Lie(T*A) we have, by (10):

ay az aas — dady . . ,

= ) . 13

[(“T)r(a;)] (ala;_aza?) ap, @ € A a8, €A (13)
We see that Lie(T*A) & Lie(A)X A*, the semidirect sum, based on the representation

a:a* = aoa*, which is not a coadjoint representation of Lie(A) on [Lie(A)]*.

Proposition 3. The skewsymmetric symplectic form

((3) ()t

is a 2-cocycle on the Lie algebra Lie(T*A).
Proof. We have to check the cocycle condition (2). We have

o(|(&%) (&2)](2))+er eram
= a3 — &a a
- w((aua; —ﬂzﬂi") ' (a;‘)) +ep (by (14)

= ({@1a3 — azay, a3} — (a3, ;a2 — apar)} +CP (by (10c))

= — ({&3, aia3) + CP) + ({a], @2a3} + CP) — ({a3, @102 — @a1) + CP)
= — {({a}, may) + CP) + ((a7, a1a2} + CP) — ({43, @122 — @aa1}) + CP = 0.
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Remark 6. If G is a Lie algebra then, in general, the symplectic form on GIXG* is not a
2-cocycle unless G is Abelian,

Proposition 4. The definition (10) of T*A is natural.

Proof. Let A be another quasi-associative algebra, and let ¢ : A — A be an isomorphism,
Then the dual map ¢* : A* — A* is invertible. Denote by ¢ the map ¢!, so that

{p(a™), pb)) = {a", b) a*e AYbeA. (15)

We have to verify that the map ¢ preserves (10). This is obvious for (10g) and (105). For
the product AA* we have

{plab™), p(c)} (by (15)) =(ab",c) (by (10c})
—{b*, ac) (by (15)) = —{p®E"),elac)) (since ¢ is an isomorphism)
— {p@"), pla)p(c)} (by (10c)) = (pla)e(®"), p(c))

50 that

p(ab®) = pla)p(b”).

Corollary 1. We have isomorphisms of Lie algebras

Lie(A) = Lie(A) Lie(T*A) ~ Lie(T*A).

Remark 7. Formula (i5) shows that the symplectic 2-cocycles (14) map into each other
under the isomorphism

¢ : Lie(T*A) — Lie(T*A).

Remark 8. The construction of T*G for G = Lie(A) can be viewed from the following
general perspective. Suppose P is a Poisson manifold. In general, only rarely can the phase
space T* P be made into a Poisson manifold in such a way that the Poisson bracket on T*P
extends that of P and is compatible with the canonical Poisson bracket on T* P. When this
is possible, P is called strongly Poisson [3). The classical r-matrices and their nonlinear
generalizations (the so-called Jacobi-ordered Poisson arrangements) can be interpreted in
this language, but very little is known so far about which Poisson manifolds are strongly
Poisson. Proposition 3 above, from this point of view, means that if A is quasi-associative
then P = [Lie(A)]* is a strongly Poisson manifold.

Example 3. Let A be an associative algebra End(V). Then Lie(End(V)) = gi(V), with
the commutator

[ay, a2] = myay — @ay

Let us identify the dual space to End(V), [End(V)]*, with End(V) itself by using the
trace form

{a*. a) =Trig"a).
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By formula (10}, the multiplication rules between A and A* are

a*ob=0
and

Te((@ 0 b*)c) = {a o b*, ¢} = —{b*,a 0 ¢) = —Tr(b*ac)
so that

aoh* =—b'a (16)

where on the right-hand side in (16} we have the uswal matrix multiplication. Then (13)
provides the following phase space, T*g!/(V), to the Lie aigebra gi(V):

/
a az . a1ds — daidy
[() “2)] = (_a;a, i) (a»

The symplectic 2-cocycle on this Lie algebra is

o((5)-(3)) ream-aio

Remark &. All our constructions have finite-dimensional flavour, However, example 2 of
D(R™) is an infinite-dimensional one and it can be properly described only in the language
of variational calculus over differential algebras (see [2], part A). In this setting: A = KV
where K is a commutative ring with n commuting derivations d;,...,8, : K — K;
multiplication in A is given by differential operators; A* = Hom(A, K is identified with
K™N; in formula (10c) the equality sign * =’ is replaced by the equality modulo 3, Ima,
sign *~7; the same replacement takes place in (2), so that the symplectic form (14} becomes
a generalized 2-cocycle on the Lie algebra Lie(T*A); everything else remains unchanged.
In the example 2, with A = K", A* = K" = {X*}, formula (10¢) yields

(XoX*), Y ={(XoX* ¥)~—{X*Xo¥)
= —X}Xo¥) (by(®) =-XIXVi~(X7X"),Y

50 that
(X o X*), =(X"X]) s (19)

which implies that
DR =P Vi) (20)
r=1

where V;({) is the ith copy of the one-dimensional D(R")-module of volume forms

DRY) 2 X =X+ 3,X' = X +div(X). (21)
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Formula {19) now becomes
((X*3) 0 X), = (3: X)X (219
which justifies (20). From (13) we find the commutator in the L|e algebra T*D(R"),

[(Jf)(}f)]=(xy[x-yylox) 22)

Recall that if & is a finite-dimensional Lie algebra then the dual space G* to G has the

natural structure of a Poisson manifold:

(f:8}g) = (g.1dflg, dglel} 18 e C®GH geg.
In tocal coordinates, this formula has the standard form

a ]

(fa)=Lp, 2
Bq; ag;
where B = (B;) is the (Flamiltonian) matrix

By = ¢l
and cfj are the structure constants of G in a chosen basis. When G is an infinite-dimensional
Lie algebra (over differential or differential-difference ring), the matrix B is read off the
commutator in G via the following definition (details and proof may be found in [2],
part A):

el X, Y1 ~ X' B(Y) ¥X, Yeg
where [X, ¥, is the kth component of the commutator in G. The matrix B is Hamiltonian
since the associated Poisson bracket

_ () (%
vor=(57) 2 (35)

satisfies the Jacobi identity (modulo divergencies).
Applying this construction to the Lie algebra T*D(R") (equation (22)) and denoting the
dual coordinates on it by (M, p} = (M;, p*), we have

(;;;) B (:) ~MAX YT+ P (X oY =Y o X*)

where X, Y, etc are elements of K* considered as column-vectors, whence

M; 24
B = M; (MJ-B,-+6,»M, -—p:’i) . (23)
p P, 0

Proposition 3 now amounts to the property of the matrix B + b being Hamiltonian, where
b is the symplectic matrix

M, p’

| j
b= ‘”‘f Oi g 1. 28

Remark 10, The pair of matrices (23), (24) has been used in [3] to construct phase-space
analogues of the Korteweg—de Vries Kdv equation (for n = 1) and iocal integrable systems
in n 42 —d for any #n. Also, in [3], a super KdV equation was lifted into the Z,-graded
phase space. This suggests that all our previous constructions can be generalized into the
Z,-graded (and even more generally graded) demain by inserting various signs into the
formulae (2), {3) and (10). This is left to the reader as an exercise.
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4. Current algebras

Let K = C*®(R"). If G is a finite-dimensional Lie algebra then Aff(G),, the current (or
affine) algebra of G, is the following Lie algebra;

(n%a) (nea)]=( Gron )
h®a /' \ 2@a Xi(f2)®a— Xao(f1) Qa1+ 2@ [ar,a2]

where Xy, X2 € D(R™), fi, e X, a,a2€G, and X(f)y=X'f,.

Suppose G has a phase space (e.g., if G = gi(V)). This means that there exists a
representation o : G = End({™) such that, on the semidirect sum Lie algebra GiX ,G”, the
symplectic form is a 2-cocycle. This is equivalent to the identity

p'@)®) - p*(b)(@) =la,b]  Va,beg (25)
where p% : G = End(G) is the representation dual to p.
Proposition 5. If G has a phase space then so does the corresponding current algebra.
Proof . We define T*Aff(G), by the rule

X X2
fiea fi®a
X! ) X3
51 ®af 5®al
) (X5, X2]
X1(RA@a-XH(M)@a + i i®(a,a:l (26)

— ~ Xl o X; - X2 ] X;‘

Xi1(22) ® a3 ~ Xa2(g1) @ af + figopla)ey) — frgiolad(ay)
where g1, 82 € K, aj.a; € G, f(g) = (X'g):. X7, X; € [D(R")]*, and X 0 X™ is given
by (19). By (6.137) in [2], formula (26) defines a Lie algebra. It remains to check that the
symplectic form

w(1,2) = (X7, X2) — (X3, X1) + g1.f2la], @) — g2.1{a3, a1} 27

defines a 2-cocycle on T*AffF(G),, where w(], 2) is a short-hand notation for the value of
@ on the arguments written in long-hand in (26). We have

w([1,2],3)+cP

= ((X10 X3 — X20 X7, X3} — (X5, [X1, X2]), +cp (28a)
+ (fig2{pla)(@3), a3) fr — fagilp(aa}(al), as} f
— galas, [a1, a1} f1 o) +- CP (285)
+ (X1(e2) f5(a3. a3) — Xa(g1) filal, as)
— g3 X1(f2)(a3, a2) + g3 Xa(Hi)May, ar)) 4 CP. (28¢)

The expression (28a) is ~ 0 by remark 9. The expression (286) vanishes by the
assumption on G encoded in (25). The remaining expression (28¢) transforms into

(Xa(gs) frlal a1) + cP) — (Xa(1) fr(at, a3) + CP)
— (g1 Xa(f3)(a], a3} + CP) + (33X2(ft)£f!;yﬂ|) + CP)
= [X2(ga) i + Xa(f)esla}, @) + € — [X5(81) 5 + 81 X:(f3))(a}, a3} + CP
= [(X3g300).4(a3, a1) = (Xzg1f3)alaf, as)] +cp ~ 0.

Remark 11. Taking G to be one-dimensional Abelian, we obtain the phase space to the Lie
algebra of linear differential operators of order < 1 on R,
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5. Vector fields

In classical mechanics, if M is a configuration manifold and X € D(M) is a vector field on
it, i.e. a derivation of the ring C°°(M) of smooth functions on A, then X can be uniquely
lifted from M into the phase space T*M to a vector field X, say. This lift has the property

(X, ¥]=(X,7] (29)

for any X,Y € D(M). Let us see what is an analogy of this property in the framework of
quasi-associative algebras.
Let X, Y € Der(A) be two derivations of A, i.e.

X(ab) = X(a)b+aX(b) Va,be A (30)
and similarly for Y. Note that Der(A) is a Lie algebra with respect to the commutator
[X.Y]=XY ~-¥X X, Y € Der{A)

irrespective of whether A is associative or not. If we denote by 1, the ideal generated by (3)
in a free k-algebra spanned by the elements of A, then it’s easy to see that Der(A)(f4) C Ia4.
If A is quasi-associative, we extend Der(A) into Der(T*A) by the rule

XA C A% (X(@"). b) = —(a*, X(®)). (31)

Proposition 6. X &€ Der(T*A).

Proof. We have to check the Leibnitz formula (30} in T*A. In view of (10a) and (105),
we only need to verify the relation

X(ab*) = X(@)b* + aX (b"). (32)
We have
(X@b*),c) by GL) =—(ab*, X(c)} (by (10c)) = (6%, aX(c)) (33a)
(X (@b* +aX®*), c) = —{b*, X(a)c) — (X(b*), ac)

= —{b*, X(a)e) + (b*, X(ac)) (by 30)) =(b",aX(c)) (338)

which is the same as (33a)
Proposition 7. The map ~ : Der(A) — Der(T*A) is a homomorphism of Lie algebras.
Proof. We have to verify (29) for X, Y € Der{A). This amounts to showing that
(X 71" = [X. Pla®)
which is equivalent to
(X, ¥1@"), b) = {[X, V](a"), )
which can be seen as follows:

(X.Y)@),b6) Gy 31)) = —{a", [X, Y](b)) ~
— (@, XY () — YX(B)) = (R(@"), Y(O)) — (V(a"), X (&)
= —(YX(a"), b) + (XY (@), b) = (X, T}a"), b).
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Proposition 8. If X € Der(A) then X € Der(Lie(A)).
Proof. We have to check that the equality

X([a, b1} = [X{a), b] + [a, X (B)]
follows from (30). We have

X([a,b]) = X(ab—ba)=X{(a)b+aX(b) - X(b)a—bX(a)
= X(@b—-5bX(a)+aX(b) — X{(b)a = [X{a), b]+ [a, X(b)].

Corollary 2. If X € Der(A) then X € Der(Lie(T*A)).

Remark 12. For any a € Lie(A), ad(a) € Der(Lie(A)). The same map ad(a) acts on A,
It’s easy to see that ad(a) € Der(A) iff A is associative.
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