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Non-Abelian phase spaces 
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The University of Tennessee Space Institute, Tullahoma, 'TN 37388, USA 

Received 22 October 1993 

Abstract. For a vector space V ,  its phase space T'V is the vector space V e! V* together 
with the canonical symplectic form on it. Since the vector space is the same as an Abelian Lie 
algebn, the natural question is: given a Lie algebra 8, does there exist a phase space T'F? In 
general, the answer is nepative. Below, for a large class of Lie algebra 8, the phose space T'F 
is constructed. Three examples are treated in detail: B = gf(V); F = D(R")). the Lie algebra 
of vector fields on R"; and current algebra 

1. Introduction 

Let V be a vector space over a field k .  The phase space of V .  T'V,  is the vector space 
V @ V *  endowed with the symplectic form 

w ( u  @U*, U @ U") = (U*, U) - (U", U )  U ,  U E v U*, U* E v* . (1) 

If we consider V as an Abelian Lie algebra, the natural framework for the notion of the 
phase is the following: given a Lie algebra E (over k ) ,  make the vector space E + P into 
a Lie algebra, T'G, in such a way that the symplectic form w (equation (1)) is a 2-cocycle 
on T*E, i.e. 

W ( [ U I  + U ; ,  U2 + U;]. U3 + U;) + CP = 0 ui E G uf E E* (2) 

where 'CP' stands for 'cyclic permutation'. As posed for an arbitrary Lie algebra, this 
problem has, in general, no solution. Below, I will describe a large class of Lie algebras for 
which one can find a phase space. This class includes: gi(V);  D(Rn), the Lie algebra of 
vector fields on R"; and current algebras. The basic idea is this: if the Lie algebra E comes 
out of an associative algebra A then everything is fine. But the associativity condition on 
A can be significantly weakened, producing the so-called quasi-associative algebras. 

2. Quasi-associative algebras 

Let A be an algebra over k ,  not necessarily associative, A is called quasi-associative [ I ]  if 

a(bc) - (ab)c = b(aC) - (ba)c 

In particular, every associative algebra is quasi-associative. 

VU, 6,  c E A .  (3) 

Denote by Lie(A) the vector space of A with the new multiplication 

[a ,b]  = a b  - ba. 
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Proposition I ,  If A is quasi-associative then Lie(A) is a Lie algebra. 
Proof. We have to check the Jacobi identity 

[ [a ,  b], c] + CP = 0 .  
We have 
[ [a ,  b ] ,  c] + CP = [ab - ba, cl + CP 

= [(ab - ba)c - c(ab - ba)] + CP 

= [(ab)c+CP] - [ (ba)c+C~]-[c(ab)+CP]+[c(ba)+cP]  

= [(ab)c + CP] - [(ba)c + CP] - [a(bc) + CP] + [b(ac) + CP] 

= ([(ab)c - a(bc)]  - [(ba)c - bcac)]) +CP = 0 by (3). 

(5) 

Remark I .  When A is associative rather than quasi-associative, the proposition I describes 
the standard fact and leads to the notion of the universal enveloping algebra of a Lie algebra. 
Formula (3) (or formula (3') below) shows how to generalize this notion. 
Remark 2 .  Proposition 1 remains true if one defines quasi-associativity using the opposite 
multiplication in A, so that the defining relation (3) becomes 

(ab)c - a(bc) = (ac)b - a(cb) Va, 6 ,  c E A .  

Remark 3.  The defining relation (3) can be equivalently stated as 

(3') 

a(bc) - (ab)c is symmetric in a ,  b (6) 

a(bc) + (ba)c is symmetric in a ,  b .  (7) 

or as 

Example I .  Let A = CYR') ,  the space of smooth functions on RI, with the multiplication 

(8) a o b = ab' 

where b' = dbjdr. Then for the Lie algebra Lie(A) we have the commutator 

[a,  b]  = a o b  - b c) a = ab' -arb 

so that Lie(A) = D(R'). On the other hand, 

a o ( b o  c )  - (a o b )  o c = a(bc')' - (ab')c' = abc" 

is symmetric in a ,  b, so that, by (6), A is quasi-associative. 

Example 2.  A = K',  K = Cm(R"), with the multiplication in A 

(X 0 Y)' = XTY' .y X = ( X i )  Y =(Y') E A  (9) 

[X, Yl' = (X 0 Y)' - (Y 0 x)' = X"Y,t - Ysx;,, 

where ( ),,, = a(.)/ax', and ( x ' ,  . . . , x" )  are the coordinates on R"; summation over 
repeated indices is in force. Since, for Lie(A), we have 

we see that Lie(A) = D(R"). To check the quasi-associativity of A, we have 
[xo(Yoz)-(xoY)oz] i =X~(YoZ)b-(XoY)"Z~,v 

= X*(Y"Z',,),, - x"Yl;z!,v = XWY"' ,as 

and this is symmetric in X, Y ;  by (6), A is quasi-associative. 
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3. T'A, the phase space of A 

Let A* = Hom(A, k )  be the dual space to A. We shall make the vector space T*A = A+A' 
into an algebra by extending the multiplication from A into T'A via the rules 

A"A* = {O] A'A C A* AA* C A' ( loa)  
a*6 = 0 ( lob)  
(ab*. c )  = -(b*, ac)  a', b' E A* a, b, E A .  (10c) 

Proposition 2 .  If A is a quasi-associative algebra then the phase space of A, T'A, is again 
a quasi-associative algebra. 

Pmof,  Because of ( loa) ,  in checking the defining relation (3) for T*A, we have to verify 
this relation only for the three cases when one of the arguments in this relation belongs to 
A* and two others belong to A. We have, 

(i) a*(bc) - (a*b)c = b(a*c) - (ba*)c = 0 by ( lob) ;  
(ii) similarly for the case when b E A' in (3): 
(iii)(a(bc*) - (ab)c*,d) (by (10~) )  

= - (bc', ad)  + (c". (ab)d) (by ( 1 0 ~ ) )  
= (c*, b(ud)) + (c*, (ab)d) = (c", b(ad) + (ub)d) (11)  

and, by (7), this is symmetric in a ,  b. Thus, by (6), T*A is quasi-associative. 

Remark 4 .  T'A is not associative even if A is (otherwise the expression ( 1  I )  would have 
been identically zero). 

Remark 5.  For the opposite multiplication (3'), formulae ( lob)  and (1Oc) take the form 

ab* = 0 (a'b, c) = -(a*, cb) .  (12) 

For the commutator in the Lie algebra T'Lie(A): = Lie(T*A) we have, by (10): 

[ ($, ( z ) ]  = ( ala; ' I a z  -a la;  at ,a,  E A a;,a; E A * .  

We see that Lie(T*A) w Lie(A)#A*, the semidirect sum, based on the representation 
a : a* + a o a*, which is not a coadjoint representation of Lie(A) on [Lie(A)]". 
Proposition 3 ,  The skewsymmetric symplectic form 

is a 2-cocycle on the Lie algebra Lie(T*A). 

Proof. We have to check the cocycle condition (2). We have 
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Remark 6. If G is a Lie algebra then, in general, the symplectic form on gpcG* is not a 
2-cocycle unless G is Abelian. 

Proposition 4 .  The definition (IO) of T*A is natural. 

Proof. Let A be another quasi-associative algebra, and let (0 : A -+ A be an isomorphism. 
Then the dual map 'p* : A* + A' is invertible. Denote by 'p the map 'p*-', so that 

('p(a"), 'p(b)) = (U', b) a* E A*, b E A .  (15) 

We have to verify that the map 'p preserves (IO). This is obvious for (IOU) and ( lob) .  For 
the product AA* we have 

(dab ' ) ,  (~(c))  (by (15)) = (ab', c) (by (W) 
= - (b*.ac) (by (15)) = -('p(b*), ' ~ ( u c ) )  (since 'p is an isomorphism) 
= - (V(b*), rp(a)(~(c)) (by (10~)) = ((o(a)'p(b'), 

so that 

(o(ab*) = W M b ' )  

Corollary I .  We have isomorphisms of Lie algebras 

Lie(A) Lie(A) Lie(T*A) % Lie(T"2) 

Remark 7. Formula (15) shows that the symplectic 2-cocycles (14) map into each other 
under the isomorphism 

'p : Lie(T*A) 4 Lie(T*A). 

Remark 8. The construction of T*G for G = Lie(A) can be viewed from the following 
general perspective. Suppose P is a Poisson manifold. In general, only rarely can the phase 
space T'P be made into a Poisson manifold in such a way that the Poisson bracket on T*P 
extends that of P and is compatible with the canonical Poisson bracket on T*P. When this 
is possible, P is called strongly Poisson [3]. The classical r-matrices and their nonlinear 
generalizations (the so-called Jacobi-ordered Poisson arrangements) can be interpreted in 
this language, but very little is known so far about which Poisson manifolds are strongly 
Poisson. Proposition 3 above, from this point of view, means that if A is quasi-associative 
then P = [Lie(A)1. is a strongly Poisson manifold. 

Example 3.  Let A be an associative algebra End(V). Then Lie(End(V)) = gl(V), with 
the commutator 

[ U ] ,  S I  = ala2 - UZUI . 

Let us identify the dual space to End(V), [End(V)]', with End(V) itself by using the 
trace form 

(U'. a )  = Tr(a'a) . 
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By formula (IO), the multiplication rules between A and A* are 

a * o b = O  

and 

Tr((a o b*)c) = (a o b', c) = -@*,a c c )  = -Tr(b*ac) 

so that 

a ob' = -b"a (16) 

where on the right-hand side in (16) we have the usual matrix multiplication. Then (13) 
provides the following phase space, T * g [ ( V ) ,  to the Lie algebra g l ( V ) :  

The symplectic 2-cocycle on this Lie algebra is 

Remark 9. All our constructions have finite-dimensional flavour. However, example 2 of 
D(R") is an infinite-dimensional one and it can be properly described only in the language 
of variational calculus over differential algebras (see [Z], part A). In this setting: A = K N  
where K is a commutative ring with n commuting derivations al ,  ..., 8, : K + K ;  
multiplication in A is given by differential operators; A* = Hom(A, K) is identified with 
K N ;  in formula (IOc) the equality sign ' = ' is replaced by the equality modulo E,? Ima, 
sign '-'; the same replacement takes place in (Z), so that the symplectic form (14) becomes 
a generalized 2-cocycle on the Lie algebra Lie(T*A); everything else remains unchanged. 
In the example 2, with A = K", A* = K" = {X*], formula (IOc) yields 

(X 0 X*),Y' = ( X  c x*, U) - -(x*, x 0 Y) 
= - Xl(X o Y)' (by (9)) = -X:X'YLy - (X:X')),Y' 

so that 

(X c X*), = (X"Xl),, (19) 

which implies that 

where VI  (i) is the ith copy of the one-dimensional D(R4))-module of volume forms 

D(Rn) 3 x = X5& H a,$x' = x f div(X). (21) 
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Formula (19) now becomes 

which justifies (20). From ( 1 3 )  we find the commutator in the Lie algebra T*'D(R"). 
( ( ~ $ 3 ~ )  ox*)i = (a,xxx;) (21') 

) [( x") (31 = ( X O  Y ' -  Y O X "  
[X! Y l  

Recall that if G is a finitedimensional Lie algebra then the dual space G* to g has the 
natural structure of a Poisson manifold: 

( f ,gl(4)=(4.[dfI , ,dgl , I )  f -gECw(G*)  €E.. 
In local coordinates, this formula has the standard form 

where B = ( B i j )  is the (Hamiltonian) matrix 

and c$ are the structure constants of G in a chosen basis. When G is an infinite-dimensional 
Lie algebra (over differential or differential-difference ring), the matrix B is read off the 
commutator in G via the following definition (details and proof may be found in [ 2 ] ,  
part A): 

q J X ,  Ylr -X'B(Y) 
where [ X ,  Y ] r  is the kth component of the commutator in G. The matrix B is Hamiltonian 
since the associated Poisson bracket 

B. .  - k 
1, - qlqL 

VX, Y 6 G 

i f > P l = ( $ o )  
satisfies the Jacobi identity (modulo divergencies). 

dual coordinates on it  by (M, p )  = (Mi, p t ) ,  we have 
Applying this construction to the Lie algebra T'D(R") (equation (22)) and denoting the 

(:*)' B (:) - M j [ X ,  Y]' + p ' (X  o Y" - Y o X * ) i  

where X, Y, etc are elements of K" considered as column-vectors, whence 
P J  

Proposition 3 now amounts to the property of the matrix B + b being Hamiltonian, where 
b is the symplectic matrix 

Remark IO. The pair of matrices (23), (24) has been used in [3]  to construct phase-space 
analogues of the Kortewegde Vries KdV equation (for n = 1) and local integrable systems 
in n 4- 2 - d for any n. Also, in [3], a super KdV equation was lifted into the &-graded 
phase space. This suggests that all our previous constructions can be generalized into the 
&-graded (and even more generally graded) domain by inserting various signs into the 
formulae (Z), (3) and (IO). This is left to the reader as an exercise. 
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4. Current algebras 

Let K = CYR"). If G is a finite-dimensional Lie algebra then Aff(G),, the current (or 
affine) algebra of 8, is the following Lie algebra: 

where X I ,  Xz f 'D(R"). fi. fz E K, ai. az E G, and X(f)  = X'fi. 
Suppose B has a phase space (e.g., if G = g l ( V ) ) .  This means that there exists a 

representation p : B + End(B*) such that, on the semidirect sum Lie algebra GD(,,P, the 
symplectic form is a 2-cocycle. This is equivalent to the identity 

(25) 
where p d  : B + End(B)  is the representation dual to p ,  
Proposition 5 .  If G has a phase space then so does the corresponding current algebra. 
Proof. We define T * A f f ( G ) ,  by the rule 

p d ( a ) ( b )  - pd(b)(a) = [a. bl Vas b E G 
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5. Vector fields 

In classical mechanics, if M is a configuration manifold and X E D(M) is a vector field on 
it, i.e. a derivation of the ring Cm(M) of smooth functions on M, then X can be uniquely 
lifted from M into the phase space T'M to a vector field 2, say. This lift has the property 

^ ^  

[XTYI = [ X ,  Y l  (29) 

for any X ,  Y E D ( M ) .  Let us see what is an analogy of this property in the framework of 
quasi-associative algebras. 

Let X ,  Y E Der(A) be two derivations of A,  i.e. 

X(ab)  = X(a)b  + a X ( b )  Vu, b E A (30) 

and similarly for Y .  Note that Der(A) is a Lie algebra with respect to the commutatoi 

[ X ,  Y ]  = X Y  - Y X  X ,  Y E Der(A) 

irrespective of whether A is associative or nor If we denote by I A  the ideal generated by (3) 
in afree k-algebra spanned by the elements of A, then it's easy to see that Der(A)(IA) c 1,. 
If A is quasi-associative, we extend Der(A) into Der(T*A) by the rule 

(31) X^(A*) C A' : (?(a'), b )  = -(a*, X(b))  . 

Proposition 6 .  ? E Der(T*A). 

Proof. We have to check the Leibnitz formula (30) in T*A. In view of (IOU) and ( lob) ,  
we only need to verify the relation 

X^(ab*) = X(a)b* + aX^(b*). (32) 

(X^(ab*), C )  (by (31)) = -(ab*, X(c) )  (by ( 1 0 ~ ) )  = (b", a X ( c ) )  (330) 

We have 

(X(u)b* +a?(b*), c )  = -(b*, X(a)c)  - (?(b'),ac) 
= -(b*, X(a)c)  + (b*, X(ac) )  (by (30)) = (b' ,uX(c)) (33b) 

which is the same as (33a) 

Proposition 7.  The map ^ : Der(A) -+ Der(T*A) is a homomorphism of Lie algebras. 

Proof. We have to verify (29) for X ,  Y E Der(A). This amounts to showing that 
A A  

[XTYKa') = [ X .  Yl(a') 

which is equivalent to 
^ ^  

( [xTYl (a*) ,  b) = ( [ X .  Yl(a*), b )  

which can be seen as follows: 

( [ X f Y l ( 4 ,  b )  (by (31)) = -(a*, [ X .  Y M ) )  
= - (a", X Y ( b )  - Y X ( b ) )  = (X^(U* ) .  Y(b)) - (T(a*), X ( b ) )  
= - (F?(a*), b )  + ( s ( u * ) ,  b )  = ( E X ,  Y](u*),  b )  . ^ ^  
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Proposition 8. If X E Der(A) then X E Der(Lie(A)). 

Proof. We have to check that the equality 

X([a ,  bl) = IX(a), bl + [a, X(b)l 

follows from (30). We have 

X([a ,  b ] )  = X(ab - ba) = X(a)b +aX(b)  - X(b)a - bX(u)  
= X(n)b - bX(n)  + aX(b)  - X(b)a = [X(a) .  61 +[a .  X(b)]  

Corollary 2 .  If X E Der(A) then x̂  E Der(Lie(T*A)). 

Remark 12. For any a E Lie(A), ad@) E Der(Lie(A)). The same map ad(a) acts on A. 
It's easy to see that ad(a) E Der(A) i f f  A is associative. 
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